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We present a study of the role of zonal flows in relaxation and transport in a reduced model of collisionless
ITG turbulence. A fundamentally new constituent in the relaxation dynamics is revealed, namely that ion and
electron guiding center motion togather necessitate a radial flux of polarization charge, which in turn exerts
a dynamical friction on phase space density evolution. This effect then enters the evolution of 〈δ f 2〉 and the
transport dynamics, as described by a Lenard-Balescu type equation. The underlying physics is similar to that
which follows from conservation of potential vorticity, albeit now for a phase space fluid, and is not simple
shearing or wave packet modulation. Consequences for zonal flow momentum balance are discussed.
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1. Introduction
Zonal flow (ZF) physics still remains an important is-

sue in magnetic fusion, since ZFs reduce turbulent trans-
port by self-regulating process of shearing and thus en-
hance the performance of fusion devices. [1, 2]. Recently
Charney-Drazin momentum theorems [3, 4], which ac-
count for momentum balance between flows and waves in
potential vorticity dynamics, were extended to fusion plas-
mas [5]. One can also extend the theorems to kinetic sys-
tems, based on the similarity between potential vorticity
dynamics and phase space density dynamics. The detailed
derivation and discussion of the kinetic Charney-Drazin
theorems are beyond the scope of this work and will be
discussed in the other publications. Here we point out that
the kinetic Charney-Drazin theorems imply the importance
of ZFs in phase space dynamics; the time evolution of δ f 2

is closely tied to the ZF growth.
The extension of Charnery-Drazin theorems to kinetic

systems poses the problem on the resonance. In non-
resonant limit, the theorems still hold and one can inter-
pret the result as the momentum balance between flows
and waves. On the other hand, when one has a strong reso-
nance between particles and waves, one cannot interpret
Charney-Drazin theorems as flow-wave momentum bal-
ance; pseudomomentum may not be well-defined with res-
onance. In strong resonant limit, waves would grow until
the effect of particle trapping becomes important. In this
situation, localized structures in phase space, such as BGK
mode [6], granulations [7], holes [8] and etc, would emerge
and alter the dynamics of ZFs and transport processes. The
existence of localized structures effectively act as a dynam-
ical friction in phase space, as seen in the Lenard-Balescu
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Fig. 1 Growth of a hole

equation.
In this work we will discuss the dynamics of phase

space structures and their interaction with ZFs. This work
can be divided into two parts depending on two num-
bers characterizing systems; i) the Kubo number, K ≡
τac/τbounce, where τac is a life time of a packet and τbounce

is a bounce time in a potential trough, and ii) the Chirikov
parameter, S ≡ Δv/Δvph, where Δv is a width of island
and Δvph is the spacing between resonances. In the first
part, we treat a simple single structure limit, i.e. K ≥ 1
and S � 1, and show that the growth of structures can-
not avoid ZF coupling. The connection to the momentum
theorems will be discussed as well. In the second part, we
treat multi-structure limit, i.e. K ≤ 1 and S ≥ 1 discuss the
interaction between multi-structures and ZFs and calculate
the resultant transport processes.

2. Single Structure in Phase Space
and Zonal Flow
As the first topic, we consider a localized single struc-

ture in phase space with K ≥ 1 and S � 1. In these
parameter regime, coherent structures or holes [8], due to
self-trapping [6] or binding [9, 10], emerge. These struc-
tures grow when propagating up-gradient, since the total
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f must be conserved along a trajectory (Fig. 1). The time
evolution of holes [8] is

∂t

∫
dEδ f 2

i = −2〈Ṽrñi〉∂〈 f 〉
∂x
|0 (1)

where the subscript 0 denotes the location of a hole, (x0,
E0). The growth of a hole is tied to a particle flux of ions
and a gradient at the location of a hole. Locally, by having
a particle flux, one can reduce the amount of density at the
point, which leads to increasing the depth of the hole and
hence to growth of the hole, since total phase space density
is conserved.

ZF coupling appears in a particle flux of ions. Since
the net dipole

∫
dx

∑
α qαnα(x)x is invariant [8], one can

replace a particle flux of ions by the sum of particle flux
of electrons and polarization charges. Polarization charges
introduces fluid vorticity into a system and a polarization
charge flux can be regarded as a vorticity flux. From these
observations, one can rewrite the structure growth as

∂t

⎧⎪⎨⎪⎩
∫

dE
δ f 2

i

2〈 f 〉′|0 + 〈Vθ〉
⎫⎪⎬⎪⎭ = −ν〈Vθ〉 − 〈Ṽrñe〉. (2)

At a stationary state, one has 〈Vθ〉 = −〈Ṽrñe〉/ν. Localized
holes scatter off electrons and can pump ZF growth and
their dynamics cannot avoid the coupling to ZFs.

It is interesting to compare the result with Charney-
Drazin momentum theorems for Hasewaga-Wakatani sys-
tem [5]

∂t

{ 〈δq2〉
〈q〉′ + 〈Vθ〉

}
= −ν〈Vθ〉 − 〈Ṽrñ〉 − δt〈q̃2〉/〈q〉′.

(3)

q = n − ∇2φ, 〈δq2〉/〈q〉′ and δt〈δq2〉 ≡ ∂r〈Ṽrδq2〉 +
D0〈(∇δq)2〉 are a potential vorticity, wave activity density
and a local potential enstrophy increment, respectively. A
detailed discussion on the theorems is found in [5]. One of
the points we emphasize here is that wave activity density
is equal to psedomomentum of quasiparticles and hence
the theorems describe the momentum freezing between
flows and waves. Here we emphasize the clear corre-
spondence between single structure growth, Eq. 2 and mo-
mentum theorems, Eq. 3. Localized structures, as well as
waves, can interact with ZFs.

3. Multi-Structures in Phase Space
and Zonal Flow
We hitherto identified ZFs as a fundamental con-

stituent in phase space structure dynamics in single struc-
ture limit. An interesting and important limit is multi-
structure limit, K ≤ 1 and S ≥ 1, i.e. when multi-structures
such as clump or granulations [7] exist and interact with
each other in phase space. The interaction between phase
space structures would cause relaxation and transport in
the system.

As an example for the interaction of multi-structures
and the associated relaxation and tranpsort, we treat a
trapped ion induced ITG turbulence. In a trapped ion
mode, the resonance between waves and the magnetic pre-
cession of trapped particles destabilizes a mode. One of
the features of the resonance is the long coherence time
between waves and trapped particles. In another word,
the Kubo number approaches unity. In this situation, the
evolution of structure and the failure of quasilinear theory
are both likely, hence one must include the effect of phase
space structures in calculating a transport.

To describe the dynamics of phase space turbulence,
one can employ Dupree-Lenard-Balescu type equations;

∂t〈δh(1)δh(2)〉 + T (1, 2) = P(1, 2) (4)

∂t〈 f 〉 = −∂r[−D〈 f 〉′ + F〈 f 〉] (5)

The first equation describes the time evolution of a two
point correlation fucntion. Here δh is a non-adiabatic part
in δ f , T (1, 2) is a triplet term and P(1, 2) is a production
term. The production, P(1, 2), is directly related to relax-
ation and transport; the physics of this term is described
extensively later. The triplet term, T (1, 2), is effectively the
lifetime of correlations and given by a relative dispersion
due to the difference in drift and shear velocities at different
points, a nonlinear scattering and a collisional dissipation.
The detailed expression of T (1, 2) and P(1, 2) without the
effect of ZFs is given in [11]. The second equation has the
form of Fokker-Planck equations and describes transport
process. The flux consists of two parts: one is a diffusion
D and the other is a dynamical friction F. The existence
of structures induces a dynamical friction in phase space.
Note that a conventional quasilinear theory only predicts a
diffusive part in a transport equation. An explicit form of D
and F comes from the production term P(1,2). A novel ef-
fect is ZF coupling via dynamical friction, F, as explained
later.

In the presence of multistructures, production P(1,2)
consists of two parts, P = Pc + P̃; Pc is a coherent part and
P̃ is an incoherent part. A coherent part Pc comes from
a coherent response, as the name stands, and represents
quasilinear production. An incoherent part P̃, on which we
focus extensively here, represents the effect of structures.
The explicit expression of an incoherent part is

P̃(1, 2) = −
∑
kω

(ω − ωi
∗(1))Imε(2)ε̂−1(1)ε̂∗−1(2)

×
〈
δ̃n(1)

n0
δ̃h
∗
(2)

〉
kω
〈 fi(1)〉eik·x− + (1↔ 2),

(6)

where (1 ↔ 2) denotes the term with arguments 1 and 2
replaced. As one can see, an incoherent part P̃(1, 2) is pro-
portional to Imε. The physical interpretation of this term
is an effective ‘wake’ in phase space and hence leads to a
dynamical friction.

Imε = Imεe + Imεi + Imεpol originates from any dis-
sipation in plasmas, either collisional or collisionless. For
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example, in [11] and our model, Imεe comes from colli-
sional dissipation in electron (Imεe ∝ νc) and Imεi orig-
inates from collisionless damping via wave-particle reso-
nance. A novel effect enters via a polarization charge cou-
pling Imεpol. By including a polarization charge contribu-
tion and allowing an envelope coupling, i.e. modulation
in amplitude, one can have Imεpol ∝ kr∂r. In fact, this
term represents ZF coupling in phase space dynamics, as
one can show this term is a ‘disguised’ Reynolds forcing.
This result should not be surprising, because one can ex-
pect from a single structure analogy, Eq. 2. Note that ZF
coupling occurs due to a polarization charge flux, via GK
Poisson equation.

The full expression of P(1, 2) = Pc(1,2) + P̃(1, 2) is

P(1, 2) = −
∑
kω

(ω − ωi
∗(1))Imεe(2)ε̂−1(1)ε̂∗−1(2)

×
〈
δ̃n(1)

n0
δ̃h
∗
(2)

〉
kω
〈 fi(1)〉eik·x−

+
∑
kω

(ω − ωi
∗(1))

(
2kr
∂

∂r2

)
ε̂−1(1)ε̂∗−1(2)

〈
δ̃n(1)

n0
δ̃h
∗
(2)

〉
kω
〈 fi(1)〉eik·x− + (1↔ 2).

(7)

A coherent part and incoherent drag on ions cancele with
each other. This is because we treated linear response as
a resonant delta function. In this limit, ions cannot relax
alone for the case of a localized structures. This is because
in the 1D problem, to conserve energy and momentum dur-
ing effective collisions, particles cannot change their ve-
locity. The explicit calculation of the cancellation is given
in [11]. Note that the cancellation of a coherent and inco-
herent part is rather special, and they do not cancel each
other in general; for example, when one retains the effect
of the resonance broadening in the response function, there
exist a finite contribution due to inelasticity. In this paper,
however, we treat a simple delta function response and the
effect of such inelasticity is not considered. The first term
is from collisional dissipation on electrons and the second
term represents ZF coupling via a polarization charge flux.
One would explain the result based on the net charge bal-
ance: Ions are dressed by the cloud of electrons and polar-
ization charges in order to satisfy quasi-neutrality, hence
any dissipation on the cloud, i.e. collisions on electrons
and ZF couplings, must lead to a friction on ions. The
friction due to ZF coupling is understood as a collisionless
friction.

The triplet term T (1, 2) is, after a lengthy algebra,

T (1, 2) = (vd(E1) − vd(E2) + 〈Vy〉(x1) − 〈Vy〉(x2))

× ∂
∂y−
〈δh(1)δh(2)〉 −

(
Dx−
∂2

∂x2−

+2Dx−y−
∂2

∂x−∂y−
+ Dy−

∂2

∂y2−

)
〈δh(1)δh(2)〉

−〈δh(1)C(δh(2))〉 + (1↔ 2). (8)

The first term represents the effect of relative dispersion
due to the difference in a drift and shear velocity. Shear
flows introduce a new time scale, i.e. a shear enhanced
dispersion rate. The second term originates from scattering
due to fluctuations and

Dx− ∼ Regkω

∣∣∣∣∣∣qφ̃Ti

∣∣∣∣∣∣
2

kω
(1 − cos kxx−), (9)

where gkω = i/(ω − ω̄DĒ − kθ〈vExB〉 + iτ−1
c ). Dx− consists

of two parts; a quasilinear type diffusion part, the first term
in the parenthesis, and a relative diffusion part, the second
term in the parenthesis. In the large separation limit, the
relative diffusion part oscillates rapidly and cancels out on
average; Quasilinear type diffusion dominates in this limit.
In the small separation limit, Dx− ∼ Regkω|φ̃|2kωk2

x x2− and
the diffusion coefficient depends on a relative separation,
not only on an amplitude. Dx−y− and Dy− have a similar
expression. The third term is a collisional cut-off.

We showed the form of P(1, 2) and T (1, 2) and dis-
cussed their physics; the full expression for the evolution
of a 2 point correlation function, 〈δh(1)δh(2)〉, in the limit
of 1→ 2, is

∂t〈δh2〉 + T〈δh2〉

=
∑
kω

⎧⎪⎨⎪⎩−(ω − ωi
∗)

Imεe
|ε|2 〈 f 〉

〈
δ̃n
n0
δ̃h
∗
〉

kω

+
2(ω − ωi∗)kr

|ε|2 〈 f 〉
〈
δ̃n
n0
∂rδ̃h

∗
〉

kω

⎫⎪⎬⎪⎭ . (10)

Again, the evolution of structures cannot avoid ZF cou-
pling; in this case, the coupling is between ZFs and multi-
structures, as compared to single-structures.

Relaxation and transport associated with structure dy-
namics is described by Eq. 5. The result for production
term P(1, 2) yields a relevant flux in phase space J(r) ≡
−D∂r〈 f 〉 + F〈 f 〉;

J(r) =
∑
kω

⎧⎪⎨⎪⎩−kθ
Imεe
|ε|2

⎛⎜⎜⎜⎜⎝ δ̃nn0

⎞⎟⎟⎟⎟⎠
kω

δ̃h−k−ω

+
2kθkr

|ε|2
⎛⎜⎜⎜⎜⎝ δ̃nn0

⎞⎟⎟⎟⎟⎠
kω
∂rδ̃h−k−ω

⎫⎪⎬⎪⎭ . (11)

A relevant flux, i.e. flux of particle and energy, is obtained
by taking the velocity moment. Two points are worth re-
marking. First of all, the transport process is drastically
different from quasilinear description. Both terms origi-
nate from a dynamical friction; a diffusive part, which also
shows up in quasilinear theory, cancelled with the contri-
bution from Imεi in a dynamical friction. The second point
is that ZFs affect transport differently from usual fashions;
the effect of ZFs shows up explicitly as a relaxation driver
in the presence of structures, whereas in a usual fashion
the effect of ZFs shows up more implicitly, i.e. via a de-
coupling of cross phase and suppresion of amplitude.
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